Agenda DISCO Investigator meeting November 12

Welcome and presentation of participants

Sten

Study update

Sten

ESC Guidelines-impact on DISCO

Stefan

Pearl study

Stefan

Netherlands-update

Judith or Niels

France-update

Christian S or Alain

Denmark-update

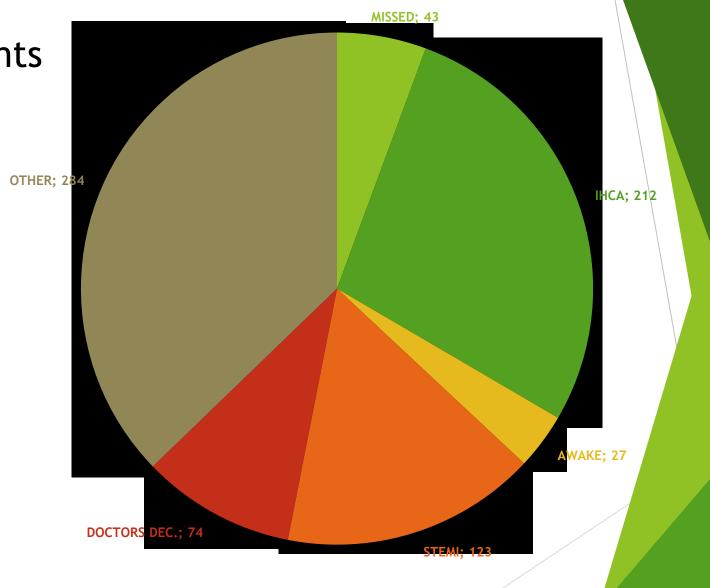
Christian JT

Neurologic follow-up and Prognostication

Tobias, Ing-Marie or Ewa

Questions addressed by the sites

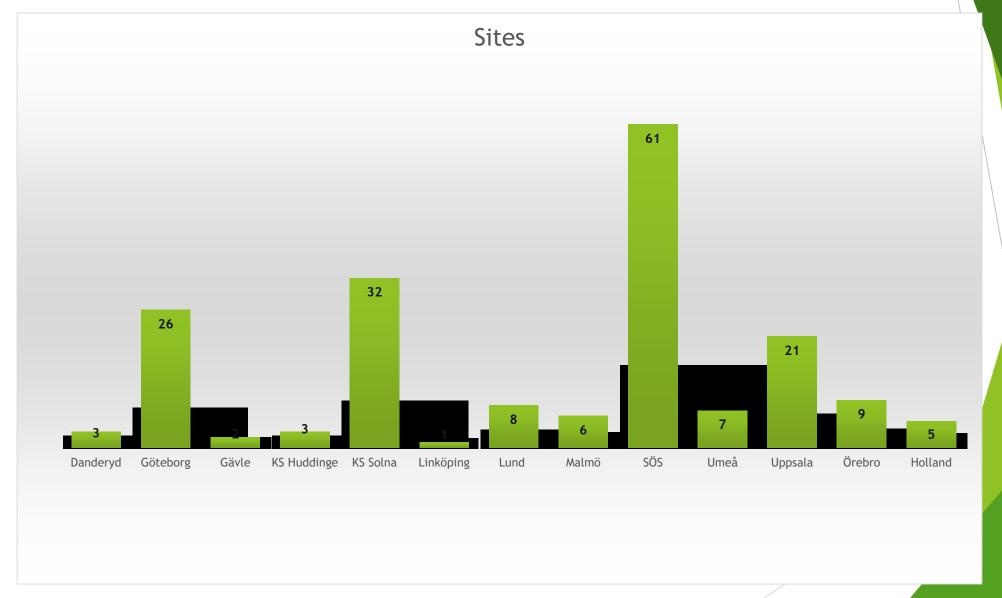
ΑII


Summary

Study update

Cardiac arrests Screeningpossible inclusion into DISCO 947 patients

since main study start March 2018


Screening763 excluded patients

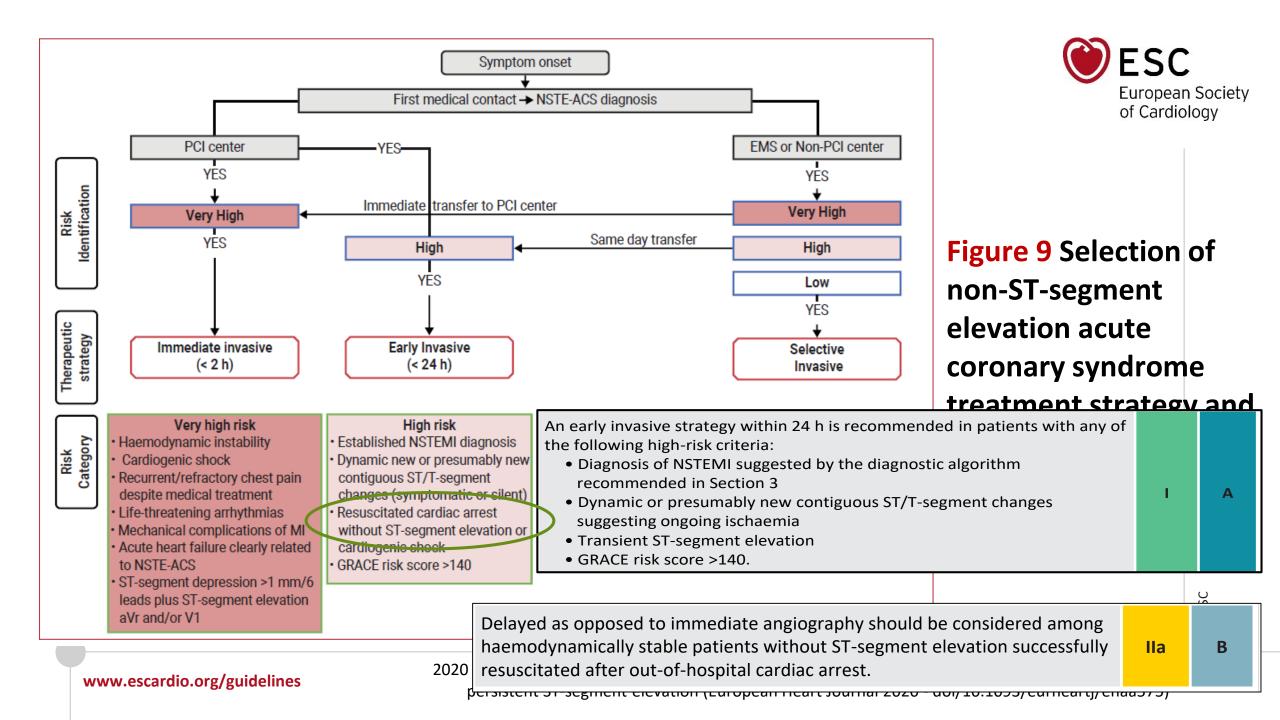
OTHER and DOCTORS DECISION

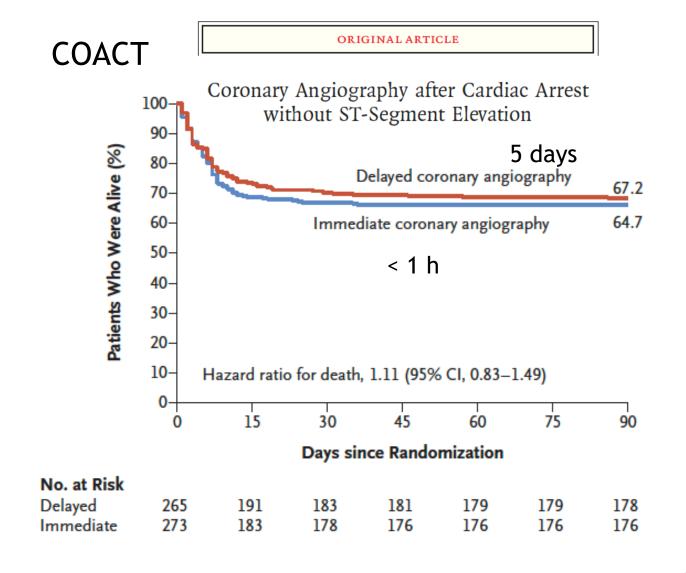
- ANGIO-DOCTORS DECISION
- UNWITNESSED
- ► ARRHYTHMIA PEA
- NON-CARDIAC
 HYPOXIA
 INTOXICATION
- DNR
- ADMITTED FROM OTHER HOSPITAL

Study Update Included patients 184

ESC Guidelines-impact on DISCO

Stefan James





Task Force Members:

Jean-Philippe Collet (Chairperson) (France), Holger Thiele (Chairperson) (Germany),

Emanuele Barbato (Italy), Olivier Barthélémy (France), Johann Bauersachs (Germany),
Deepak L. Bhatt (United States of America), Paul Dendale (Belgium), Maria Dorobantu (Romania),
Thor Edvardsen (Norway), Thierry Folliguet (France), Chris P. Gale (United Kingdom), Martine Gilard (France),
Alexander Jobs (Germany), Peter Jüni (Canada), Ekaterini Lambrinou (Cyprus), Basil S. Lewis (Israel),
Julinda Mehilli (Germany), Emanuele Meliga (Italy), Béla Merkely (Hungary), Christian Mueller (Switzerland),
Marco Roffi (Switzerland), Frans H. Rutten (Netherlands), Dirk Sibbing (Germany),
George C. M. Siontis (Switzerland)

Invasive coronary treatment strategies for out-of-hospital cardiac arrest: a consensus statement from the European Association for Percutaneous Cardiovascular Interventions (EAPCI)/Stent for Life (SFL) groups

Marko Noc¹, MD; Jean Fajadet², MD; Jens F. Lassen³, MD; Petr Kala⁴, MD; Philip MacCarthy⁵, MD; Goran K. Olivecrona⁶, MD; Stephan Windecker⁻, MD; Christian Spaulding⁶*, MD

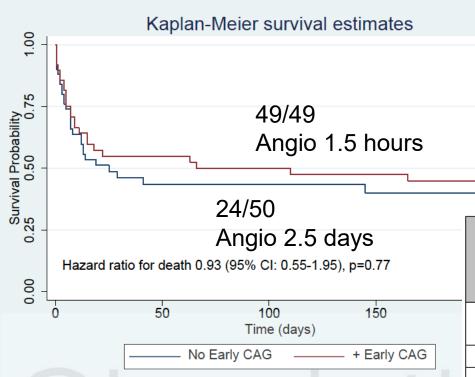
Abstract

Due to significant improvement in the pre-hospital treatment of patients with out-of-hospital cardiac arrest (OHCA), an increasing number of initially resuscitated patients are being admitted to hospitals. Because of the limited data available and lack of clear guideline recommendations, experts from the EAPCI and "Stent for Life" (SFL) groups reviewed existing literature and provided practical guidelines on selection of patients for immediate coronary angiography (CAG), PCI strategy, concomitant antiplatelet/anticoagulation treatment, haemodynamic support and use of therapeutic hypothermia. Conscious survivors of OHCA with suspected acute coronary syndrome (ACS) should be treated according to recommendations for ST-segment elevation myocardial infarction (STEMI) and high-risk non-ST-segment elevation -ACS (NSTE-ACS) without OHCA and should undergo immediate (if STEMI) or rapid (less than two hours if NSTE-ACS) coronary invasive strategy. Comatose survivors of OHCA with ECG criteria for STEMI on the post-resuscitation ECG should be admitted directly to the catheterisation laboratory. For patients without STEMI ECG criteria, a short "emergency department or intensive care unit stop" is advised to exclude non-coronary causes. In the absence of an obvious non-coronary cause, CAG should be performed as soon as possible (less than two hours), in particular in haemodynamically unstable patients. Immediate PCI should be mainly directed towards the culprit lesion if identified. Interventional cardiologists should become an essential part of the "survival chain" for patients with OHCA. There is a need to centralise the care of patients with OHCA to experienced centres.

DISCO

Direct or Subacute
Coronary angiography
for Out of hospital
cardiac arrest a
randomized study

A Randomized Pilot Clinical Trial of Early Coronary Angiography Versus No


Early Coronary Angiography for Post-Cardiac Arrest Patients Without ST-

Segment Elevation: The PEARL Study

Running Title: Kern et al.; Angiography in Resuscitated Patients Without ST Elevation

Karl B. Kern, MD¹; Peter Radsel, MD, PhD²; Jacob C. Jentzer, MD⁴; David B. Seder, MD³;
 Kwan S. Lee, MD¹; Kapildeo Lotun, MD¹; Rajesh Janardhanan, MD¹; Dion Stub, MD, PhD⁵;
 Chiu-Hsieh Hsu, PhD⁶; Marko Noc, MD, PhD²

Conclusions: This underpowered study, when considered together with previous clinical trials, does not support early coronary angiography for comatose survivors of cardiac arrest without ST elevation. Whether early detection of occluded potential culprit arteries leads to interventions that improve outcomes requires additional study.

Culprit identified in 46.9 vs 41.7%

Primary EP

Composite of efficacy and safety measurements, including efficacy parameters of survival to discharge, favorable neurological status at discharge (Cerebral Performance Category < 2), echocardiographic measures of left ventricular ejection fraction >50% and a normal regional wall motion score of 16 within 24 hours of admission

Endpoint	Early coronary angiography (n=49)	No early coronary angiography (n=50)	P*
	Freq (%)	Freq (%)	
1° Endpoint of Combined	27 (55.1%)	23 (46.0%)	0.64
Efficacy and Adverse Events			
Composite efficacy	36 [†] (73.5%)	30 [†] (60.0%)	0.20
Survival to DC	27 (55.1%)	24 (48.0%)	0.55
Normal WMSI at admission	9 (19.6%) (n=46)	12 (25.5%) (n=47)	0.62
LVEF ≥50% at admission	19 (40.4%) (n=47)	16 (34.0%) (n=47)	0.67
Intact functional status at DC	25 (51.0%)	23 (46.0%)	0.69
Composite Adverse Events	13 (26.5%)	13 (26.0%)	1.00
Re-arrest	3 (6.1%)	3 (6.0%)	1.00
Pulmonary edema	3 (6.1%)	0 (0.0%)	0.12
Acute renal worsening	1 (2.0%)	2 (4.0%)	1.00
Bleeding	2 (4.1%)	0 (0.0%)	0.24
Hypotension	5 (10.2%)	5 (10.0%)	1.00
Pneumonia	4 (8.2%)	4 (8.0%)	1.00

Endpoint	Early coronary angiography (n=49) Freq (%)/median (IQR)	No early coronary angiography (n=50) Freq (%)/median (IQR)	P*
days; 95% CI)			
Hazard ratio (95% CI)	0.93 (0.55, 1.55)	1.00	0.77
30-day survival (S(t)±se [†])	0.55±0.07	0.46±0.07	0.36
180-day survival (S(t)±se)	0.45±0.08	0.40±0.08	0.66
Cause of Death			
Anoxic Brain Injury	16	17	1.00
Cardiovascular	6	6	1.00
Miscellaneous	2	6	0.27
WMSI at DC	2 (1-4) N=9	3 (1.5-4) N=8	0.59
1	4 (44.4%)	2 (25%)	
2	2 (22.2%)	1 (12.5%)	
3	0 (0%)	2 (25%)	
4	3 (33.3%)	3 (37.5%)	
WMSI at 180 days post DC	1 (1-1) N=4	2 (1-2) N=5	0.17
1	4 (100%)	2 (40%)	iation.
2	0 (0%)	3 (60%)	
CPC <3 or MRS <4			
30 days post DC	19 (86.4%) (n=22)	16 (88.9%) (n=18)	1.00
180 days post DC	16 (100%) (n=16)	13 (100%) (n=13)	NA
MMSE			
At DC	27.0 (25-30) (n=17)	28.5 (27-30) (n=18)	0.69
180 days post DC	30.0 (29-30) (n=13)	30.0 (23-30) (n=11)	0.84
Anxiety			
At DC	6.0 (4-9) (n=16)	5.0 (1-12) (n=19)	0.70
180 days post DC	4.0 (1-5) (n=13)	1.0 (0-4) (n=11)	0.23
Depression			
At DC	3.0 (0.5-7.5) (n=16)	4.0 (1-8) (n=19)	0.78
180 days post DC	1.0 (0-3) (n=13)	2.0 (0-3) (n=11)	1.00
MOCA	///	/ / //	
At DC	21.5 (18-22.5) (n=16)	25.0 (15-28) (n=17)	0.65
180 days post DC	26.5 (25-28.5) (n=12)	29.0 (27-30) (n=9)	0.13
IQCODE	, , , ,	, , , ,	
At DC	3.0 (2.75-3.19)(n=14)	3.0 (3-3.10) (n=12)	0.89
180 days post DC	3.0 (2.9-3.16) (n=12)	3.0 (3-3.8) (n=11)	0.15

"To be conscious that you are ignorant of the facts is a great step to knowledge"

Benjamin Disraeli

EUROPE

Netherlands, France, Denmark

Netherlands

Niels van Royen & Judith Bonnes

France

Christian Spaulding

Denmark

Christian Juhl Terkelsen

Follow-up

DISCO trial

Ewa Wallin, Intensive care nurse, Phd, senior lecture
Ing-Marie Larsson, Intensive care nurse, Phd, senior lecture

Why do we need Follow-Up?

Areas in the follow-up

- HRQoL
- Somatic health
- Fatigue
- Cognitive function
- Anxiety and depression
- "Daily life"
- Caregiver burden

How do we perform the follow-up?

- Face-to-face follow up whenever possible
- If face-to-face follow up is impossible, a telephone follow-up is of course better than no follow up at all

PRACTICAL ASPECTS

QUESTIONS?

Thank you for your Good work

Ing-marie.larsson@surgsci.uu.se

Neurological prognostication in the DISCO-trial

Tobias Cronberg, Professor Neurology, Lund University

Neurological prognostication in the DISCO-trial

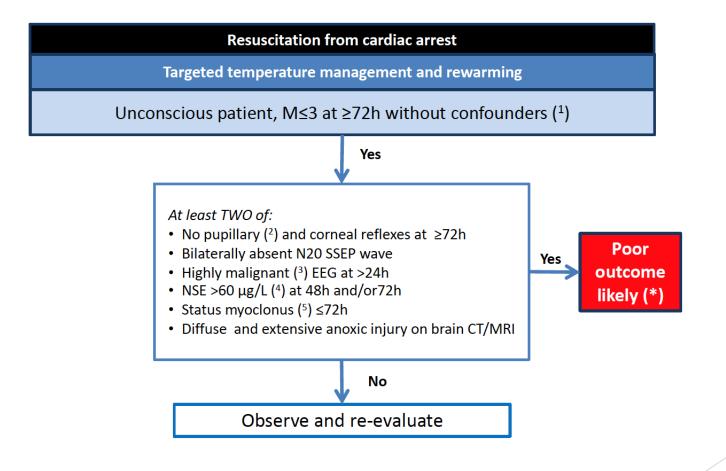
- Clinical examination focused on the motor score, pupillary reflex and corneal reflex
- ▶ EEG, CT, MRI, SSEP and serum NSE are optional investigations
- ► Formal prognostication of all patients who are still in the ICU 96 hours after randomisation

In the DISCO trial the prognosis is considered *likely poor* if A, B and C criteria are fulfilled;

- Confounding factors such as severe metabolic derangement and lingering sedation has been ruled out
- B. The patient has no response or a stereotypic extensor response to bilateral central and peripheral painful stimulation at \geq 96 hours after randomisation.
- c. At least two of the below mentioned signs of a poor prognosis are present:

At least two of the below mentioned signs of a poor prognosis are present:

- 1. Bilateral absence of pupillary and corneal reflexes at 96h after CA or later
- 2. A prospectively documented early status myoclonus (within 48 hours)
- 3. A highly malignant EEG-pattern without reactivity to sound and painful stimulation.
- 4. CT brain with signs of global ischaemic injury, such as: generalised oedema with reduced grey/white matter differentiation and sulcal effacement **OR**MRI-brain with signs of global, diffuse, or bilateral multifocal ischaemic lesions.
- 5. Serial serum-NSE samples consistently higher than locally established levels associated with a poor outcome
- 6. Bilaterally Absent SSEP N20-responses more than 48 hours after randomisation.


Highly malignant EEG-patterns

- 1. Suppressed background (amplitude <10mV, 100% of the recording) without discharges.
- 2. Suppressed background with superimposed continuous periodic discharges.
- 3. Burst-suppression (periods of suppression with amplitude <10mV constituting 50% of the recording) without discharges.
- 4. Burst-suppression with superimposed discharges.

Why should prognostication be multimodal?

- All methods have pitfalls
- ► False positives reported with all methods
- Using multiple independent methods reduce the risk of errors by chance
- ▶ There is no room for mistakes

The 2021 ERC/ESICM algorithm is multimodal

Questions

Tobias.Cronberg@skane.se

Questions/Issues from all

Summary